Effect of superrefraction on inversions of radio occultation signals in the lower troposphere
نویسنده
چکیده
[1] Radio occultation remote sensing of the Earth’s atmosphere by use of GPS encounters problems in the moist lower troposphere (planetary boundary layer). The negative errors in retrieved refractivity (bias) may not be explained by the horizontal inhomogeneity in refractivity. In part, these errors can be attributed to the use of signal tracking algorithms inappropriate for the complicated structure of radio occultation signals propagated through the moist troposphere. However, another fraction of the negative bias in retrieved refractivity can be related to the superrefraction. In this study we introduce the problem and give an estimate of the negative refractivity errors in the moist planetary boundary layer, which in some cases can be as large as 10%. We show that the magnitude of these errors significantly varies over oceanic areas. We validate the canonical transform method by use of the radio occultation signals simulated for complicated refractivity structures, including multiple superrefraction layers and small-scale irregularities. We find that this method does not introduce errors additional to those existing in geometric optics. Also, we discuss and estimate an additional error source when inverting occultation signals by radioholographic methods: insufficient extension of the acquired signal, which can contribute to about 1% error of the retrieved refractivity.
منابع مشابه
A Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method
Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...
متن کاملGPS profiling of the lower troposphere from space: Inversion and demodulation of the open-loop radio occultation signals
[1] Global Positioning System (GPS) radio occultation (RO) is a space-borne remote sensing technique providing accurate, all-weather, high vertical resolution atmospheric parameters, including pressure, temperature and humidity in the troposphere and stratosphere. In the moist lower troposphere (LT) RO encounters known problem related to the phase-locked loop (PLL) tracking technique applied in...
متن کاملObserving the moist troposphere with radio occultation signals from COSMIC
[1] New approaches for observing the moist troposphere using radio occultation (RO) signals transformed to impact parameter representation by radio-holographic (RH) methods are presented. Large changes in the RH bending angle are used as indicators of significant vertical refractivity gradients that often occur on top of the atmospheric boundary layer (ABL), convective cloud layers such as the ...
متن کاملGPS Occultation Measurements with GPS/MET and CHAMP
First results from the GPS radio occultation experiment aboard the German CHAMP satellite are presented. The agreement between observed temperature profiles in the upper troposphere and the lower stratosphere and temperature profiles obtained from meteorological analyses is found to be below 1 K. The data processing and analysis system (operated by GeoForschungsZentrum Potsdam) has been success...
متن کاملMonitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode
[1] A new type of radio occultation (RO) data, recorded in open-loop (OL) mode from the SAC-C satellite, has been tested for monitoring refractivity in the Atmospheric Boundary Layer (ABL). Previously available RO signals, recorded in phase-locked loop mode were often unusable for sensing the lower troposphere (LT) or resulted in significant inversion errors, especially in the tropics. The OL R...
متن کامل